A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
نویسنده
چکیده
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP . Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases. Keywords—Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
منابع مشابه
Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملWinner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search
A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...
متن کاملA Proposed Improved Hybrid Hill Climbing Algorithm with the Capability of Local Search for Solving the Nonlinear Economic Load Dispatch Problem
This paper introduces a new hybrid hill-climbing algorithm (HHC) for solving the Economic Dispatch (ED) problem. This algorithm solves the ED problems with a systematic search structure with a global search. It improves the results obtained from an evolutionary algorithm with local search and converges to the best possible solution that grabs the accuracy of the problem. The most important goal...
متن کاملA novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کاملMultiresponse surface optimization via Harmony search algorithm (Quality Engineering Conference Paper)
Response surface methodology is a common tool in optimizing processes. It mainly concerns situations when there is only one response of interest. However, many designed experiments often involve simultaneous optimization of several quality characteristics. This is called a Multiresponse Surface Optimization problem. A common approach in dealing with these problems is to apply desirability funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010